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Medical burden of sleep disorder

! Approximately 13.6 ± 0.6 
million adults been diagnosed 
of sleep disorder (ICD G47.x, 
2018)

! Sleep disorder is associated 
with higher rates of health care 
utilization and expenditures 

! Overall incremental health care 
costs represents approximately 
$94.9 billion

Huyett P. J Clin Sleep Med. 2021



Highlight

❖ Sleep characteristic across  the lifespan
❖ Sleep monitoring
❖ Circadian and chronotype
• Non-pharmacologic and non-mechanical management  

❖ Data-driven revolution in sleep science
❖ Sleep technology
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Physiology of sleep

❖ ⼀個睡眠週期約90分鐘，⼀個晚上有4~5個週期，睡眠週期分為非
快速動眼期 (NREM)跟快速動眼期 (REM)

Borbély Hum Neurobiol. 1982;1(3):195
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❖ 夢境與日間學整合成記憶則發⽣在快速動眼期

❖ 深睡期(SWS)為身體休息與內分泌激素分泌，如⽣長激素

https://www.ncbi.nlm.nih.gov/pubmed/7185792


Sleep stage across lifespan

週期 兒童 年輕⼈ 老年⼈

Wake清醒比例 (%) < 5 >
REM快速動眼期比例 (%) = 20-25 =

NREM非快速動眼期比例 (%)

N1 1 < 2-5 >

N2 2 = 45-55 >

3 SWS > 3-8 <

4 SWS > 10-15 0
總共睡眠時間 10-12 8-10 6-8



Function of sleep: memory 

❖ Sleep promotes consolidation of memory learned before 
sleep and acquisition of new memories learned after sleep

❖ Slow wave sleep (SWS) and REM were beneficial for 
declarative and procedure memories, respectively 

❖ Recently, REM has been reported to facilitate the verbal 
learning by consolidation of language-related learning
• REM and SWS deprivation adversely affected explicit verbal recall.

• REM is associated with verbal function in Down syndrome children

Mednick S Nat Neurosci. 2003; Rauchs G. J Sleep Res. 2005; Casey SJ Neuropsychology. 2016; Spano G. 
Proc Natl Acad Sci 2018, Lee NC Journal Formosa Medical Asociation 2020



Sleep duration across lifespan: short sleep 
duration is harmful

Hirshkowitz M. National Sleep Foundation 2015; Tobaldini E. Nature Reviews Cardiology 2019

建議

可接受

不可接受

Survey 1-2



Measurement of sleep

❖ Subjective
• Habitual sleep pattern: sleep log
• Sleep quality: 

• Pittsburgh Sleep Quality Index (PSQI) (PSQI>5 poor quality)
• Visual analog scale 

❖ Objective
• Polysomnography (PSG)
• Actiwatch
• Single lead EEG



Sleep log: self report habitual sleep pattern
早上填寫前⼀晚



Sleep log: self report 
habitual sleep pattern

睡前填寫當天

! Parameter
• Time in bed (TIB)
• Time to try to fall asleep
• Latency of sleep onset (LSO)
• Wake after sleep onset 

(WASO)
• Sleep hour
• Sleep quality
• Sleep efficiency= sleep

hour/TIB



Time to get on bed

Time to try to fall sleep

Onset latency

Awake 1

Awake 2

Last awake 

Time to get off bed

a

b

sleep

sleep

sleep

awake

� Time in bed (TIB) = 7 – 1 
� Onset latency = b
� Sleep onset = 3
� Sleep period = 6 - 3
� Frequency of awake = 2
� WASO = c + d
� Total sleep time = 6 – 2 – b – c – d

c

d

1

3

2

4

5

6

7

Sleep log

Actiwatch: 1st Rest epoch

Actiwatch: Rest 後1st Active epoch 

Actiwatch: Rest-S 後1st Rest epoch 



Actiwatch: objective measurement of sleep-
pattern 

Avg

Time in Bed (hr) 8:19:17

Total Sleep Time 
(hr) 6:44:38

Onset Latency 
(min) 14.43

Sleep Efficiency 
(%) 81.85

WASO (min) 40.07

#Awak. 41.29

Smith MT. J Clin Sleep Med. 2018



Polysomnography: montage

! 6 EEG: F4-M1, C4-M1, O2-M1, F3-M2, C3-
M2, O1-M2

! 2 EOG: E1-M2, E2-M2

! EMG: submental (3), leg (2), arm (2)

C3

M1
E1

C4

M2
E2

O1 O2

snore

Thermist air flow

Submental EMG

cannula
E1

E2

Berry RB. The AASM Manual for the Scoring of Sleep and Associated Events: Rules, Terminology and 
Technical Speci cations. Version 2.4 

seizure montage sleep montage



Video polysomnography: propriospinal 
myoclonus

❖ Sensor
• Multi-channel including EEG, EKG, EMG, EOG, nasal pressure, 

thermist, airflow, pulse oximetry, Transcutaneous or end tidal CO2

❖ Parameters detected in PSG
• Sleep stage
• Breathing event: AHI (RDI)
• Oxygenation
• PtcCO2 and ETCO2

• Movement

breathing 
event

EEG



Video polysomnography: Confusional arousal



Video polysomnography: Confusional arousal



Home sleep testing (HST) for diagnosis of OSA

❖ Portable monitor (PM) classification
• Type 2: ³ 7 channel
• Type 3: ³ 4 channel including ventilation, 

HR or ECG, and SpO2

• Type 4: 1 or 2 channel

❖ PM not appropriate for patients
• Comorbidity: moderate-severe 

pulmonary disease, NMD, or CHF
• Sleep disorders: CSA, PLM, insomnia, 

parasomnia, circadian rhythm disorders, 
narcolepsy

Collop NA J Clin Sleep Med 2007 



Out-Of-Center testing: SCOPER classification

Collop NA. J Clin Sleep Med 2011

❖ SCOPER: Sleep, Cardiovascular, Oximetry, Position, Effort, and 
Respiratory

❖ Criteria for clinically practice: LR+ ³ 5; Sensitivity³0.825;  In-
lab AHI ³ 5/hr

Collop NA. J Clin Sleep Med 2011



OSA Devices for Out-Of-Center Testing 



OSA Devices for Out-Of-Center Testing 
Categorized by SCOPER



Sleep tracking



Comparison of sleep Tracking with PSG

❖ PSG vs wristband (UP) vs smartphone application (MotionX
24/7) vs actigraphy (Actiwatch2) in pediatrics with SDB
• N=78, 65% male, 8.4±4.0 y/o
• Outcome: sleep onset latency (SOL), total sleep time (TST), wake 

after sleep onset (WASO), and sleep efficiency (SE)
• Result

• No differences in mean TST, WASO, or SE between PSG and actigraphy or PSG 
and UP

• Actigraphy overestimated SOL (21 min). MotionX 24/7 underestimated SOL 
(12 min) and WASO (63 min), and overestimated TST (106 min) and SE (17%)

• UP showed good sensitivity (0.92) and accuracy (0.86) but poor specificity 
(0.66)

Toon E. J Clin Sleep Med 2015



Multiple Sleep Latency Test (MSLT)

❖ Measure sleep propensity 
❖ The only test that is reliable and validated for assessment of 

sleepiness
❖ Procedure:

• 4-5 session 
• Nap period 

• 1st nap: 2hr after wakening
• Successive naps every 2 hr thereafter

• Sleep latency and SOREM
• Sleep latency <5 min: pathologic sleepiness, 5-10 min : significant sleepiness, >10 

min: normal



Maintenance Of Wakefulness Test (MWT)

❖ Measuring ability to stay wake
❖ MWT doesn’t correlate with the average sleep latency of 

MSLT
❖ Procedure
• 4-trial of 20-40 min 
• Average sleep latency

• Normal: 35.2 min for 40-min test and 18.7 min for 20-min test

• Narcolepsy: sleep latency around 10 min



Agreement between self-report and PSG sleep 
hour  is higher in elderly

N=7491 Self-report sleep hour (h)

All <65 y/o ≥65 y/o male female male<65 male ≥65 female<65 female ≥65

PSG 
sleep hour (h) <5

≥5 
and 
<6

<5
≥5 
and 
<6

<5
≥5 
and 
<6

<5
≥5 
and 
<6

<5
≥5 
and 
<6

<5
≥5 
and 
<6

<5
≥5 
and 
<6

<5
≥5 
and 
<6

<5
≥5 
and 
<6

<5 184 346 128 265 56 81 133 251 51 95 96 195 37 56 32 70 19 25

≥5 and <6 232 530 198 472 34 58 144 374 88 156 125 333 19 41 73 139 15 17

≥6 106 288 93 272 13 16 71 211 35 77 61 200 10 11 32 72 3 5

Agreement in 
<6h (%)

76.6 74.4 88.8 76.2 77.7 74.2 87.9 75.1 90.5

Agreement in 
<5h (%)

35.2 30.5 54.4 38.2 29.3 34.0 56.1 23.4 51.4

Chang SF , thesis 2021



Circadian and chronotype

! Circadian biomarker 
• Melatonin
• Cortisol
• Thyroid stimulating hormone
• Core temperature
• Urine output

! Intrinsic clock: free running, 
24-25 hr

! Chronotype
• Entrainment vs detrainment

Borbély Hum Neurobiol 1982

S: sleep driving; C: circadian 



Influences of light on sleep and circadian

Blue light wavelength 460-480 nm

LeGates TA. Nature 2014

ipRGC (M1-5)
non-image forming ganglion cell



Luminance and color temperature

lluminance (lux) Surfaces illuminated by
0.002 Moonless clear night sky with airglow
0.05–0.3 Full moon on a clear night
50 Family living room lights
80 Toilet lighting
100 Very dark overcast day
320–500 Office lighting
400 Sunrise or sunset on a clear day.
1000 Typical TV studio lighting
10,000–25,000 Full daylight (not direct sun) 
32,000–100,000 Direct sunlight

LeGates TA. Nature 2014



Effect of light on sleepiness and well-being

Chellappa SL. PLoS ONE 6(1): e16429

嗜睡程度

精神好



Environmental impact on chronotype: diet and
exercise

regulation by the master clock vs the
cell-autonomous clocks. This dis-
tinction is best addressed using con-
ditional, tissue-specific deletion and
will be noted, where possible,
throughout the section.

A. Brain: the command center
The SCN is the master circadian

regulator that synchronizes the rest
of the cellular clocks. Light, one of
the chief zeitgebers, is sensed by a
specific set of photoreceptors located
in the retina (72, 73), and signals are
relayed to the hypothalamic SCN
(Figure 2A). The SCN in turn com-
municates with other neurons in the
central nervous system to coordinate
organismal rhythmicity in a highly
complex network that has been more
extensively reviewed elsewhere (9,
74). The absolute requirement of the
SCN in systemic circadian control
was demonstrated by specifically in-
troducing lesions in the hypothala-
mus. Early, pioneering studies found
that lesions that destroyed or dis-
rupted the SCN ablated rhythmicity
in both drinking and physical activ-
ity (75) as well as corticosterone lev-
els (76) in rats. Similar experiments
further demonstrated that the SCN
was also required for the daily pat-
tern of blood glucose concentration
(77, 78). Finally, SCN grafts into an-
imals with disrupted circadian biol-
ogy were able to rescue and restore
organismal rhythmicity (79).

Wiring the synchronization of all
the individual peripheral clocks
through the light-controlled SCN
provides a number of evolutionary
advantages. Most importantly, one
master regulator more accurately en-
sures appropriate phase alignment in
the diverse organ systems. Coupling
this master controller to an entrain-
ment as continuous and as regular as
light allows the organism to respond
not only to daily changes but also to
seasonal changes. Moreover, one of
the first functions of biological

Figure 2.

Figure 2. Impact of modern environments on evolutionarily programmed circadian functions.
Sunlight, temperature, physical activity, and food intake serve as basic entraining cues, or
zeitgebers, that coordinate tissue-specific circadian processes to cumulatively define whole
organismal physiology. Among these zeitgebers, light is the chief synchronization cue and acts to
reset the master clock (A) in the hypothalamic SCN each day, which then relays signaling to
peripheral tissues. Evolutionarily fine-tuned, tissue-specific circadian processes discussed in this
review are depicted, including: B, heat production by brown adipose; C, energy storage by white
adipose; D, fuel source management between carbohydrate and lipid substrates in the liver; E,
distribution or circulation of blood-borne factors, hormones, and metabolites by the heart; F,
control of blood glucose levels by the pancreas; G, capacity for movement and activity by skeletal
muscle; and H, food processing and nutrient extraction by the gut microbiome. A combination of
light pollution from artificial light sources, sedentary lifestyles largely lacking physical activity,
continuous access to high-calorie foods, and living conditions maintained at constant ambient
temperature have all contributed to the disruption of circadian fitness.

292 Gerhart-Hines and Lazar Circadian Metabolism in the Light of Evolution Endocrine Reviews, June 2015, 36(3):289–304

Downloaded from https://academic.oup.com/edrv/article-abstract/36/3/289/2354712
by guest
on 01 August 2018

Gerhart-Hines Endocrine Review 2015

❖ Early evening exercise forward
body clock

❖ Alcohol
❖ Phase advances vs phase delays



❖ Subjective 
• Munich ChronoType Questionnaire (MCTQ)

❖ Objective
• 3 -14 day actiwatch (5 weekday+2 weekend)
• Salivary or plasma melatonin

• Dim light melatonin onset (DLMO) and offset: evening rise in blood 
levels of melatonin. approximately 10.75 hours before wakeup time.

❖ Chronotype: morning type, evening type, intermediate 

Chronobiologic monitoring techniques

Smith MT. J Clin Sleep Med. 2018



Assessment of chronotype: MCTQ

❖ Munich ChronoType Questionnaire (MCTQ)
• Shift vs no shift

❖ Midsleep
• Bedtime + sleep onset + sleep duration/2

• Weekday: W1-4, W7 night (MSF); free day: W5-6 night (MSW)

❖ Social jet lag= midsleep time on free day (MSF)- midsleep
time on work day (MSW)

Roenneberg T.  Journal of Biological Rhythm 2003; Juda M. Journal of Biological 
Rhythm 2013; Cheng WJ.  Chronobiology International  2017. 

 

Munich Chronotype Questionnaire for Shift-Workers (MCTQShift) 
The following questions concern your sleep- and wake behavior on work days and free days. Please 

answer them with regard to your current shift schedule, i.e. not all combinations have to be filled out! 

Also, please reply with regards to the current season (i.e., the last 6 weeks). Please try to answer ALL 

questions, even when an answer seems difficult! Spontaneous answers are often the best. Please help 

us in the evaluation of your data by providing unambiguous time references (e.g. 23:00 rather than 

11:00 PM). 

How to fill out the Munich ChronoType Questionnaire: 

 
Image 1:  The time when you went to bed. 

Image 2:  Note that some people stay awake for some time when in  
bed! 

Image 3:  The time when you “decided” to sleep, i.e. closed your eyes 
or turned off the lights.  

Image 4:  Minutes you usually spent of average on falling asleep. 

Image 5:  Time when you woke up. 

Image 6:  Minutes to get up.  

Alarm:  Indicate whether you used an alarm or not (NO, if you woke 
up before the alarm signal went off). 

Between two shifts:  Please indicate your sleep times between two shifts.  

Between two free days Please indicate your sleep times between two free days after 
after a given shift:  a given shift block (i.e., 2 free days after 4 days of morning 

shift in a row). 

Please help us by providing unambiguous time references, i.e. 23 instead of 11pm!!! 

 

Between two Morning Shifts 

 I go to bed at _________ o´clock.    (Image 1) 

      Note that some people stay awake for some time when in bed !  (Image 2) 

 I actually get ready to fall asleep at _________ o´clock.    (Image 3) 

 I need _________ minutes to fall asleep. (Image 4) 

 I wake up at _________ o´clock.     (Image 5) 

  !  with alarm   !  without alarm 

 I get up after _________ minutes.    (Image 6) 

I usually take a nap:  !  Yes !  No 

If „Yes“: I take a nap from   _________ o’clock        to   _________ o’clock. 

There are particular reasons why I cannot freely choose my sleep times on morning shifts: 

Yes !   No !   

If “Yes”: Child(ren)/pet( s)  !           Hobbies  !   Others, for example: 

___________________________________________________________________________ 

Survey 3-5



Detection of circadian rhythm with Actiwatch

weekday

activity count
model fit

RGB

weekend

The phase of clock is different during the weekday and weekend

Lee PL. Unpublished data



偵測:⽣理時鐘指數推估其他⽣理數值

�利用使用者⽣理時鐘差異指數，推估可能引發疾病的危
險因⼦

�⼤數據分析比對時鐘指數 vs.⽣理數值

⽣理時鐘差異指數

⾎
壓
（

M
AP
）

�由穿戴裝置紀錄推估⽣理時鐘指數

(比對週間與週末⽣理時鐘差異)

無差異 時鐘位移

週
末

週
間



Habitual sleep pattern in a community based 
population

Sleep log Actiwatch

TST bedtime Get off bed TST Sleep 
latency SE

7 day 405 (345 – 447) 01:06 (00:18 –
02:00)

07:30 (06:48 –
08:12)

339.5 (292.8 –
381.5)

8.5 (0 - 31.8) 81.9 (74.3 - 86.9)

Weekday 394 (340 – 430) 01:00 (00:18 –
01:48)

07:24 (06:42 –
08:00)

339 (290.8 – 379.1) 9.5 (0 - 31.5) 83.1 (75.9 - 87.6)

weekend 445(370 – 489) 01:12 (00:18 –
02:12)

07:54 (07:00 –
08:48)

345.9 (295.4 – 389) 7.5 (0 -34.5) 78 (69.3 - 83.7)

35

❖ 304 eligible registered, 108 randomly selected, 105 recruited

❖ Demographic
• Age 34 (30 - 39) , male 78%, 嗜睡(ESS≥10) 36.2%, 睡眠品質不佳(PSQI >5) 64.8%, 焦
慮(HADS-A >7): 29.5%, 憂鬱(HADS-D >7): 21%

• Sleep profile: total sleep time (TST) <6hr 68.5%

How can we do better?



好眠處⽅1：睡眠環境
 
 

良好ᅵ઀的ᅵ઀ಞᄍ 
I. ᆢ持๤፾的ᅵ઀௃ნ 

A. ᐩ光：室內宜昏ས為主，ᗉ免明亮的ᐩ光ྣ射。 
B. ྕ度：房໔ྕ度建᝼ 25～2ϲ°C，可以፾྽使用冷਻、 
ႝ風৻。 

C. ᗉ免Ꮣ音：保持房໔ᕉნ是安ᓉ，若是屋外有ค法ᗉ免的Ꮣ音，如៓ၰ਒、公

ၡ਒、ᐏᜐ，可在房໔加း႖音ื戶或其他႖音೛ഢ。以ዴ保ᅵ઀ᕉნ是安ᓉ

的。๤጗的音኷或者໒ႝ風৻來ౢ生背ඳᖂ音，以降低Ꮣ音的ቹៜ。ගᒬ家中

其他人勿來打ᘋ。 
D. ໯食：在ᅵ前 4到 ϲ小ਔ內ᗉ免໯用含ଚᆒ性、咖ଢ଼因、ૡᜪ或其他ගઓ໯
਑，ᅵ前三小ਔᗉ免大ໆ໯食如：吃宵夜฻。ᗨฅଚᆒ有ኩਔᔅ助入ᅵ的ਏ

果，但在身ᡏ代ᖴ之後反而有中ᘐᅵ઀的反ቸਏ用。 

II. ᅵ઀ਔ໔ 
A. 固定ᅵ઀ਔ໔： 
建᝼ఁ上上床ᅵ᝺ਔ໔是ఁ上 11ᗺ，ᅵ઀七、八小ਔ，勿ຬၸ九小ਔ。 

B. ፴床ຬၸ 30分ដ仍ค法入ᅵਔ，可以ଆ床଺些጗和ၮ୏、ණ步、看ਜ฻，฻有
ᅵཀ再入ᅵ，ᗉ免ᅵ前上ᆛ及看ႝຎ。 

C. 星ය一至日ᔈᆢ持固定的生活作৲ਔ໔，ᗉ免早上ᒘ床、ᒿཀ小ᅵ、或是ଷ日

ံ઀。 
D. ዴჴ༤ቪᅵ઀日ᇞ有助於ᕕှ及改正ᅵ઀ಞᄍ。 

III. ௓制光ጕ的ྣ射協助生౛ਔដ的ፓ࿯  
A. ᅵ᝺ਔ要௓制臥室中的光ጕ，ᗉ免室內光度太亮，如ಃ二天早上ᒬ來ᆒઓ不佳

可於ᅵ前ஒืᛚ及百ယื打໒，ᡣ໚光െᒬ生౛ਔដ。 
B. 夜੤工作者在早上回家ਔ可ᔎ太໚౳᜔以ᗉ免早ఃྣ光ჹ於白天ᅵ઀的負面ቹ

ៜ，並於入ᅵਔ保持室內昏ས。 
C. 工作௃ნ的光ጕ要充足。  
D. ᅵ઀相位延ᒨ者：早上ྣ光，ϲ5ྃ以下ྣ光 45分ដ；ϲ5ྃ以上ྣ光 ϲ0分ដ。 
E. ᅵ઀相位前౽者：早上ᗉ光，ಞᄍ早上ၮ୏的人，可以ᔎ太໚౳᜔ᗉ光；下午

4-5ᗺྣ光。 

 

睡眠衛生衛教影片 



好眠處⽅3：運動，安眠藥，日間小睡
 
 

IV. ೕ律的ၮ୏ 
A. 每ຼၮ୏ ϯ天，每天至少 ϯϬ分ដ。 
B. ၮ୏ਔයന大心ၢ：（ϮϮϬ ʹ年ស）ΎϬ.ϴ 
C. 日໔ၮ୏有助於白天ᆒઓᡂ好及夜ఁᅵ઀品፦但ᗉ免ᅵ前三小ਔቃਗ਼ၮ୏ 

V. 安઀ᛰ使用 
A. 持ុ使用安઀ᛰ者，要ೕ則服用ᛰ物，ᗉ免自行ፓ᏾或ଶ止ᛰ物，有用ᛰ的ୢ

ᚒᔈ၀ᆶᙴৣ૸ፕ。 

VI. ၀不၀ᅵ午᝺ 
A. ଼ந的午ᅵ固定 ϮϬ～ϯϬ分ដന恰྽，若是ຬၸ ϯϬ分ដ，身ᡏ便཮຾入不易ᅵ
ᒬ的ుᅵය，൩৒易打໶生౛ਔដ，ቹៜ正தఁ᝺。 

 
 
 
 
 
 

台大ᙴଣᅵ઀中心ᜢ心ா 
ႝ၉: ;ϬϮͿϮϯϱϲϮϳϱϱ;ϮϯϭϮϯϰϱϲᙯ ϲϯϲϭϭ 

ຼ一至ຼ五上午 ϴਔ～下午 ϰਔ  
;午休ਔ໔中午 ϭϮਔ～下午 ϭਔͿ 

ᆛ址: http:ͬͬwww.ntuh.gov.twͬSLPͬdefault.aspx 
eͲmail: sleepcenterΛntuh.gov.tw 



好眠處⽅：以光照調節⽣理時鐘

 
 

良好ᅵ઀的ᅵ઀ಞᄍ 
I. ᆢ持๤፾的ᅵ઀௃ნ 

A. ᐩ光：室內宜昏ས為主，ᗉ免明亮的ᐩ光ྣ射。 
B. ྕ度：房໔ྕ度建᝼ 25～2ϲ°C，可以፾྽使用冷਻、 
ႝ風৻。 

C. ᗉ免Ꮣ音：保持房໔ᕉნ是安ᓉ，若是屋外有ค法ᗉ免的Ꮣ音，如៓ၰ਒、公

ၡ਒、ᐏᜐ，可在房໔加း႖音ื戶或其他႖音೛ഢ。以ዴ保ᅵ઀ᕉნ是安ᓉ

的。๤጗的音኷或者໒ႝ風৻來ౢ生背ඳᖂ音，以降低Ꮣ音的ቹៜ。ගᒬ家中

其他人勿來打ᘋ。 
D. ໯食：在ᅵ前 4到 ϲ小ਔ內ᗉ免໯用含ଚᆒ性、咖ଢ଼因、ૡᜪ或其他ගઓ໯
਑，ᅵ前三小ਔᗉ免大ໆ໯食如：吃宵夜฻。ᗨฅଚᆒ有ኩਔᔅ助入ᅵ的ਏ

果，但在身ᡏ代ᖴ之後反而有中ᘐᅵ઀的反ቸਏ用。 

II. ᅵ઀ਔ໔ 
A. 固定ᅵ઀ਔ໔： 
建᝼ఁ上上床ᅵ᝺ਔ໔是ఁ上 11ᗺ，ᅵ઀七、八小ਔ，勿ຬၸ九小ਔ。 

B. ፴床ຬၸ 30分ដ仍ค法入ᅵਔ，可以ଆ床଺些጗和ၮ୏、ණ步、看ਜ฻，฻有
ᅵཀ再入ᅵ，ᗉ免ᅵ前上ᆛ及看ႝຎ。 

C. 星ය一至日ᔈᆢ持固定的生活作৲ਔ໔，ᗉ免早上ᒘ床、ᒿཀ小ᅵ、或是ଷ日

ံ઀。 
D. ዴჴ༤ቪᅵ઀日ᇞ有助於ᕕှ及改正ᅵ઀ಞᄍ。 

III. ௓制光ጕ的ྣ射協助生౛ਔដ的ፓ࿯  
A. ᅵ᝺ਔ要௓制臥室中的光ጕ，ᗉ免室內光度太亮，如ಃ二天早上ᒬ來ᆒઓ不佳

可於ᅵ前ஒืᛚ及百ယื打໒，ᡣ໚光െᒬ生౛ਔដ。 
B. 夜੤工作者在早上回家ਔ可ᔎ太໚౳᜔以ᗉ免早ఃྣ光ჹ於白天ᅵ઀的負面ቹ

ៜ，並於入ᅵਔ保持室內昏ས。 
C. 工作௃ნ的光ጕ要充足。  
D. ᅵ઀相位延ᒨ者：早上ྣ光，ϲ5ྃ以下ྣ光 45分ដ；ϲ5ྃ以上ྣ光 ϲ0分ដ。 
E. ᅵ઀相位前౽者：早上ᗉ光，ಞᄍ早上ၮ୏的人，可以ᔎ太໚౳᜔ᗉ光；下午

4-5ᗺྣ光。 
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Light therapy

❖ Apparatus
• Maximum illuminance of 10,000 lux with the patient seated in a position with the 

eyes about 30 cm from the screen

❖ Adverse effect
• If evening light is timed too late, the patient can develop insomnia and 

hyperactivity 
• If morning light is timed too early, the patient can awaken prematurely 
• Mild visual complaints included blurred vision, eyestrain, and photophobia

Philips  Sleep & Wake-up Light energy and mood light
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signals. The software achieves accuracy of over 90% for event
classification (snoring, cough, sleep) under different environmental
conditions. An important limitation of the system is that the high-
rate microphone sampling represents a significant source of
energy (and battery) consumption.
Several other sleep applications can be found on the different

app stores these days. Sleep cycle is among the most popular ones,
using both accelerometry and the built-in microphone to track
sleep and provide personalised alarm clocks, waking up the users
at ideal timings (during light sleep)68.

Ultrasound sensors. Ultrasound sensors can be used to detect
body movement and breathing patterns during sleep54,69,70. These
sensors provide information regarding the frequency and type of
body movement through the Doppler technique. This technique
mirrors that used in conventional radar systems and allows the
retrieval of parameters related to breathing rate, heart rate and
body motion. The method has been shown to detect physical
movements with an 86% recall rate and error rates of <10%71. The
most pressing limitations of this method are, however, the fine-
tuning required based on the type of targeted body and the
sensitivity to small movements72.

WiFi and radio-signal approaches. In the past decade, high
frequency and sub-millimetre wavelength radio technologies have
demonstrated the ability to capture physiological signals without
body contact. The principle is to send a low-energy radio wave
towards an individual who is in bed and then to detect the signal
bounced back from the body. Through signal processing, it is
possible to extract biological information, such as breathing
patterns, heart rate and full-body motion from these find-
ings71,73–75. These biological signals can be used to determine
sleep stages as shown by Zhao et al.76, as well as to monitor
insomnia77. The main challenge with this approach is that the
signal is subject to a lot of ‘noise’ and the information related to
sleep needs to be extracted. Moreover, the measurement
conditions are also strongly dependent on the individuals being
monitored. In particular, the signal reflects all objects in the
bedroom and is affected by the sleeping position of the
individual78.
Some of the methods described in this section are, in general,

more accurate or more usable than others. Figure 3 shows a
scheme of the accuracy versus usability trade-off for the main
methods described in this section.
Data collected from different modalities representing diverse

physiological information may have varying predictive power and

noise topology as explored in Fig. 4. However, different modalities
and the information they collect may be highly complementary
and, in practice, aggregating sleep data from various sources may
make models more robust and tolerant both to noise and missing
data. Such complementary fusion protocols have been shown to
significantly improve the classification performance of sleep
stages79,80.

SLEEP DATA STORAGE AND CURATION
Regardless of its intended end-use, all the data collected using the
methods and sensors previously discussed requires appropriate
storage, curation and processing prior to analysis. Until the turn of
the century, analogue PSG systems, limited to analogue amplifiers
and paper tracings, were common practice for storing sleep
information. However, with the development of digital recording
systems, these types of analogue recordings have become
outdated, as different challenges have emerged for handling data
from new digital sleep technologies. For example, in the era of
digital medicine, systems often require real-time storage and
processing of data collected as part the so-called Internet of
Things (IoT)81 and Big Data Analytics82. IoT links all sorts of
connected devices into comprehensive networks of inter-
correlated computing intelligence without with need for human
input. With regards to sleep, the integration of IoT technology has
several challenges. These include data storage, management and
exchange across different devices and sensors, alongside privacy,
security and data access concerns.
Cloud computing integration with IoT is gaining traction in

healthcare, and is being used for digital sleep applications. For
instance, three-layered architectures composed of (1) an IoT layer
sensor acquisition/data compilation; (2) a fog computing layer for
event processing and (3) a cloud layer for data management and
Big Data Analytics have been proposed for sleep monitoring use
cases that integrate several sensors83. In Fig. 5, an overview of data
acquisition and the movement of information from sensors to the
cloud is explored. The remainder of this section discusses the fog
computing and cloud storage layer more fully.

Fog computing layer
Fog computing entails data analysis on edge devices, which
enables real-time data processing, reducing costs and also
improving data privacy. Fog computing is commonly deemed
mini-cloud computing, as it performs all the processing locally.
The fog computing layer abstracts the heterogeneity of the
incoming data formats, communication technologies and proto-
cols from the sleep-sensor IoT layer. Platforms, such as Smart IoT
Gateway, have emerged as solutions to communicate with all the
heterogeneous IoT sensors potentially deployed in home environ-
ments and perform local processing before transmitting the data
to the cloud layer84. Fog computing seeks to achieve a seamless
continuum of computing services connecting the cloud to the
devices (IoT). This contrasts to edge computing which isolates and
keeps the computing at the ‘network edges’85 and facilitates the
aggregation of multi-modal physiological data from different
devices and sensors that are then processed locally (e.g.,
processing data directly on an IoT Gateway). This architecture
can provide near real-time decision-making to support sleep
monitoring and intervention.
Following the receipt of signals from the devices, pre-

processing at the fog computing layer includes three main
operations: (1) the fusion of signals provided by different IoT
sensors; (2) detection of periods containing missed data and (3)
imputation of missed data. When sleep sensor signals contain
missing data, it is usually because the user did not wear or was not
in contact with the sensors. However, functional errors can also
occur. For example, smartwatches may run out of battery or

Fig. 4 Holistic evaluation of sleep-monitoring methods. Some
methods, such as PSG, are accurate but inappropriate for use in daily
sleep monitoring, as they require professional set up and are
intrusive. Other methods, such as bed sensors, are unobtrusive but
more prone to noise than PSG.

I. Perez-Pozuelo et al.
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Predict sleep-wake with activity count with CNN 
and LSTM  (MESA sleep study, n=6,814)
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Expert scoring: AASM scoring manual

! Signal
• F4,C4, O2-M1; F3, C3, O1-M2; E1-M2, E1-M1

• Chin EMG, snore, nasal pressure, thermist, chest/abdomen 
movement, SpO2, ECG, leg EMG (PLM is not analyzed)

! Respiratory indices
• Apnea: drop in thermist ≥90% for ≥ 10 sec with ≥90% duration meet 

the amplitude criteria

• Hypopnea: drop in thermist ≥30% with ≥4% desaturation for ≥ 10 
sec for ≥90% duration meet the amplitude criteria
• ODI: desaturations ≥ 4% of sleep

Magalang Sleep 2013 



Inter-scorer reliability using majority score as 
ground truth: in OSA patients

Score 1 vs 2 Score 2 vs 3 Score 1 vs 3 Score 1 vs GT Score 2 vs GT Score 3 vs GT

Obstructive 0.68(±0.12) 0.75(±0.17) 0.70(±0.16) 0.73(±0.11) 0.65(±0.16) 0.74(±0.12)

hypopnea 0.69(±0.11) 0.81(±0.10) 0.81(0.12) 0.80(±0.12) 0.70(±0.12) 0.79(±0.11)

Central 0.48(±0.21) 0.64(±0.26) 0.69(±0.24) 0.79(±0.20) 0.46(±0.22) 0.60(±0.21)

Mixed 0.49(±0.36) 0.68(±0.20) 0.67(±0.26) 0.69(±0.23) 0.44(±0.26) 0.71(±0.22)

No-event 0.80(±0.10) 0.85(±0.11) 0.83(±0.11) 0.81(±0.11) 0.80(±0.11) 0.84(±0.10)

GT: ground truth

Score 1 vs 2 Score 2 vs 3 Score 1 vs 3 Score 1 vs GT Score 2 vs GT Score 3 vs GT

Wake 0.95 (+-0.06) 0.97(+-0.08) 0.95(+-0.05) 0.96(+-0.03) 0.98(+-0.06) 0.98(+-0.05)

N1 0.83 (+-0.1) 0.94(+-0.1) 0.84(+-0.08) 0.86(+-0.09) 0.97(+-0.09) 0.98(+-0.04)

N2 0.82 (+-0.12) 0.94(+-0.12) 0.83(+-0.09) 0.85(+-0.10) 0.96(+-0.1) 0.97(+-0.04)

N3 0.93 (+-0.09) 0.97(+-0.09) 0.95(+-0.05) 0.95(+-0.05) 0.98(+-0.02) 0.99(+-0.02)

REM 0.95 (+-0.1) 0.97(+-0.1) 0.96(+-0.02) 0.97(+-0.03) 0.99(+-0.1) 0.99(+-0.02)

❖ EEG (kappa)    

❖ Airflow (kappa)    

Chiu HC and Liu PK In preparation



Evaluating consumer and clinical sleep 
technology

! sleep device/app type

data, telemedicine, remote testing, remote data monitoring, and
novel device sensor and AI/ML/DL integrations catalyzed by
the COVID-19 pandemic.8–11 Sleep technology sensors, such
as pulse oximeters or EEG sensors, have been added to previous

consumer grade rings, watches, eye or head bands, and other
wearables or nearables. Proprietary AI/ML/DL algorithms,
such as those using heart rate variability (HRV), have assisted
in the progression from consumer to transitional and clinical
grade sleep technologies.

Thus, the need for clarification in how to evaluate rapidly
evolving and diverse consumer and clinical sleep technology
types anduses has becomeevenmore timely to sleep providers.12

Specifically, confirmingvalidationofproductmarketingclaimed
capabilities can be a challenge for busy clinicians who may be
seeking peer-reviewed, randomized controlled studies for each
device/app. However, such traditional validation studies may
require too long of a time frame to complete and publish for
real-time assessments of device/app performance or accuracy.
For rapidly emerging technologies, novel validation processes
may help lead to faster integration into clinical care applications.
Examples may include outcomes-based or AI/ML/DL assisted
validation.With thesechallenges inmind,wepropose the follow-
ing items for clinicians to consider when evaluating the wide
range of consumer, hybrid or transitional, and clinical sleep-
related technologies:

! Awareness of FDA terms
! Defining sleep term definitions across devices/apps
! Defining populations

Table 1—Commonly used sleep device/app technology terms.

Wearable Devices that are worn to provide physical data or feedback

Nearable Nearby contactless devices that provide physiologic or environmental data or feedback

Sensor A device that measures a physical input and converts it into understandable data

Photoplethysmography (PPG) PPG sensors use a light source and a photodetector to measure blood flow changes, which provide
signals that may use AI/ML/DL algorithms to deliver data outputs such as sleep stages

Sleep score or quality Often a product specific computation of “sleep quality” derived from questionnaires and/or sensor data

Sleep stages Device/app reporting of sleep stages such as “light sleep” or “deep sleep” that may vary in type of data
acquisition, derivations, and definitions between devices/apps; staging may be derived from
proprietary AI/ML/DL algorithms such as using PPG heart rate variability (HRV) rather than
standard polysomnographic EEG scoring rules

Patient generated health data (PGHD) Health care related data that are generated by patients and collected for the purpose to address a
health concern or issue

Mhealth (mobile health) The use of mobile phones or other wireless technologies to monitor and exchange health information

Software as a medical device (SaMD) Software intended for medical uses that does so without being part of a hardware medical device

Mobile medical app (MMA) A mobile app whose functionality meets the definition of a medical device

Clinical decision support (CDS) software SaMD software risk categorization established by the International Medical Device Regulators Forum
to determine if a software treats, diagnoses, or drives or informs clinical management

Artificial intelligence/machine learning (AI/ML) as
an SaMD

SaMD that may have “locked” AI/ML algorithms or “adaptive learning” algorithms that may be
assessed using an FDA Precert total Lifecycle product approach

Remote data monitoring Monitoring of data remotely

Remote patient monitoring A subset of remote data monitoring that is used clinically

Application programming interface (API) A software interface that allows two or more applications to exchange information such as with an
electronic health record

Algorithm A sequence of statistical processing steps to solve a problem or compete a task

Artificial intelligence (AI) The broad use of computer algorithms to simulate human tasks and thinking

Machine learning (ML) A subset of AI that uses data training sets to make predictions and decisions without explicit
programming

Deep learning (DL) A subset of ML that enhances a deeper dive into smaller patterns of artificial neural networks

Figure 1—Sleep device/app types.

S Schutte-Rodin, MC Deak, S Khosla, et al. Evaluating consumer and clinical sleep technologies
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 ! Guide to evaluating sleep 

technology
limitedby its data collectionoutsideof thehomeand for it provid-
ing only a snapshot in time. Home sleep apnea tests also provide
snapshot data, do not typically include arousals, and may have
variable accuracy of sleep metrics across devices. Actigraphy
too has limits of its data acquisition being expensive and time-
consuming as well as data collection generally for only 2 weeks.
Reliable consumer sleep technologycouldprovidepopular, inex-
pensive, 24/7 sleep/wake data collection over long periods of
time.89 New pathways for diagnostic testing, clinical treatments,
and/or chronic management could emerge from such long-term
data collection and analysis.

SleepprovidersarefamiliarwiththeimprovementinCPAPcom-
pliance with remote data monitoring and patient engagement soft-
ware.90–92 Providers look forward to adding enhanced remote
testing, treatment, and both consumer and clinical data monitoring
sleep technology tools to provide real-time and improved
between-visit care, personalized care, interactive data alerts, and
novel care guidelines based on personalized or population health
big data analytics.AI/ML/DLanalytics of ongoing patient reported
data andphysiologicdataover timeoffernewopportunities tomon-
itor individual and group patient symptoms and physiology in the
home continuously, indefinitely, and in real time. Changes from
baseline data trends could prove invaluable in predicting individual
and group disease onset and/or exacerbations.9,10,93,94

However, before using sleep devices/apps clinically, pro-
viders seek to gain comfort in understanding how to assess the
accuracy, performance, and intended uses of the productmarket-
ing claims. As more devices/apps utilize proprietary AI/ML/DL
algorithms, user confidence is further challenged. Wu et al stud-
ied the 130medicalAI devices cleared by the FDAbetween 2015
and 2020 and found the FDA AI process less vigorous than the
FDA pharmaceutical process.95 As an example, the authors
used a chest X-ray detection of pneumothorax algorithm and
found that it worked well for the original site cohort but was
10% less accurate for two different sites and less accurate for
Black patients. They cite that many datasets are retrospective,
from only one or a few sites, or do not include all representative
populations in clinical settings. Interested clinicians can search
the FDA web database for devices/apps that have obtained
510(k) clearance or premarket approval. Yet, seekers cannot eas-
ily do similarFDAwebAI/ML/DLsearches, andBenjamens et al
have created an open access database of strictly AI/ML-based
medical technologies that have been approved by the FDA.96

As described in this paper (and Table 2), a practical checklist
for clinicians when evaluating sleep product claimed uses
includes: awareness of FDA terms, familiaritywith product sleep
term definitions, use with particular populations, data integrity
considerations, recognizing sensor types and applications,
awarenessofproprietaryAI/ML/DLalgorithms,andclarification
of validation methods used for the product claimed uses. At pre-
sent, evaluating product claimed uses requires time-consuming
verification and/or familiarity for each unique device/app. Until
there are consistent performance standards for these elements
across devices/apps, providersmay continue to feel unsure about
clinical use of the many and diverse sleep technologies. Recent
guides have been proposed for developers to use to document
the performance of product claimed uses, and consumers, clini-
cians, and researchers look forward to this consistency and

transparency.Toprovideuserconfidence, increasedcommunica-
tions and collaboration between industry, government, insurers,
clinicians, researchers, and consumers couldhelp to create a stan-
dard framework for reporting of product performance.
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Table 2—A guide to evaluating sleep technologies.

! Awareness of FDA terms
! Defining sleep term definitions across devices/apps
! Defining populations
! Data integrity
! Applications of new sensors, new sensor applications,

or other novel technologies
! Awareness of proprietary AI/ML/DL algorithms
! Defining validation methods for claimed capabilities
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FDA terminology

❖ FDA classification: based on device/app safety risk, intended 
use, and indication for use

❖ FDA device/app: class I (low risk) , II (moderate-higher risk),  
III (high risk)

❖ Premarket notification or 510(K) FDA clearance
• FDA determine if the product is equivalent to a predicate device/app

already placed in Class I,II, III type category
• Often required for Class I and II device/app and doesn’t require

clinical trial
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FDA terminology

❖ Premarket approval (PMA)
• Class III device/app, require for safe and effective
• Clinical trial supported with lab testing

❖ FDA approval
❖ FDA granted
• DeNovo pathway before marketed for Class I, II device with low to 

moderate safety risk when no similar predicate device

❖ General wellness
• Not require 510(K) clearance or PMA approval



Merry Christmas  
Happy New Year


